ingesting-data

تایید شده

Data ingestion patterns for loading data from cloud storage, APIs, files, and streaming sources into databases. Use when importing CSV/JSON/Parquet files, pulling from S3/GCS buckets, consuming API feeds, or building ETL pipelines.

@Albmartinez13
MIT۱۴۰۴/۱۲/۳
(0)
۰ستاره
۰دانلود
۱بازدید

نصب مهارت

مهارت‌ها کدهای شخص ثالث از مخازن عمومی GitHub هستند. SkillHub الگوهای مخرب شناخته‌شده را اسکن می‌کند اما نمی‌تواند امنیت را تضمین کند. قبل از نصب، کد منبع را بررسی کنید.

نصب سراسری (سطح کاربر):

npx skillhub install Albmartinez13/ai-design-components/ingesting-data

نصب در پروژه فعلی:

npx skillhub install Albmartinez13/ai-design-components/ingesting-data --project

مسیر پیشنهادی: ~/.claude/skills/ingesting-data/

محتوای SKILL.md

---
name: ingesting-data
description: Data ingestion patterns for loading data from cloud storage, APIs, files, and streaming sources into databases. Use when importing CSV/JSON/Parquet files, pulling from S3/GCS buckets, consuming API feeds, or building ETL pipelines.
---

# Data Ingestion Patterns

This skill provides patterns for getting data INTO your systems from external sources.

## When to Use This Skill

- Importing CSV, JSON, Parquet, or Excel files
- Loading data from S3, GCS, or Azure Blob storage
- Consuming REST/GraphQL API feeds
- Building ETL/ELT pipelines
- Database migration and CDC (Change Data Capture)
- Streaming data ingestion from Kafka/Kinesis

## Ingestion Pattern Decision Tree

```
What is your data source?
├── Cloud Storage (S3, GCS, Azure) → See cloud-storage.md
├── Files (CSV, JSON, Parquet) → See file-formats.md
├── REST/GraphQL APIs → See api-feeds.md
├── Streaming (Kafka, Kinesis) → See streaming-sources.md
├── Legacy Database → See database-migration.md
└── Need full ETL framework → See etl-tools.md
```

## Quick Start by Language

### Python (Recommended for ETL)

**dlt (data load tool) - Modern Python ETL:**
```python
import dlt

# Define a source
@dlt.source
def github_source(repo: str):
    @dlt.resource(write_disposition="merge", primary_key="id")
    def issues():
        response = requests.get(f"https://api.github.com/repos/{repo}/issues")
        yield response.json()
    return issues

# Load to destination
pipeline = dlt.pipeline(
    pipeline_name="github_issues",
    destination="postgres",  # or duckdb, bigquery, snowflake
    dataset_name="github_data"
)

load_info = pipeline.run(github_source("owner/repo"))
print(load_info)
```

**Polars for file processing (faster than pandas):**
```python
import polars as pl

# Read CSV with schema inference
df = pl.read_csv("data.csv")

# Read Parquet (columnar, efficient)
df = pl.read_parquet("s3://bucket/data.parquet")

# Read JSON lines
df = pl.read_ndjson("events.jsonl")

# Write to database
df.write_database(
    table_name="events",
    connection="postgresql://user:pass@localhost/db",
    if_table_exists="append"
)
```

### TypeScript/Node.js

**S3 ingestion:**
```typescript
import { S3Client, GetObjectCommand } from "@aws-sdk/client-s3";
import { parse } from "csv-parse/sync";

const s3 = new S3Client({ region: "us-east-1" });

async function ingestFromS3(bucket: string, key: string) {
  const response = await s3.send(new GetObjectCommand({ Bucket: bucket, Key: key }));
  const body = await response.Body?.transformToString();

  // Parse CSV
  const records = parse(body, { columns: true, skip_empty_lines: true });

  // Insert to database
  await db.insert(eventsTable).values(records);
}
```

**API feed polling:**
```typescript
import { Hono } from "hono";

// Webhook receiver for real-time ingestion
const app = new Hono();

app.post("/webhooks/stripe", async (c) => {
  const event = await c.req.json();

  // Validate webhook signature
  const signature = c.req.header("stripe-signature");
  // ... validation logic

  // Ingest event
  await db.insert(stripeEventsTable).values({
    eventId: event.id,
    type: event.type,
    data: event.data,
    receivedAt: new Date()
  });

  return c.json({ received: true });
});
```

### Rust

**High-performance file ingestion:**
```rust
use polars::prelude::*;
use aws_sdk_s3::Client;

async fn ingest_parquet(client: &Client, bucket: &str, key: &str) -> Result<DataFrame> {
    // Download from S3
    let resp = client.get_object()
        .bucket(bucket)
        .key(key)
        .send()
        .await?;

    let bytes = resp.body.collect().await?.into_bytes();

    // Parse with Polars
    let df = ParquetReader::new(Cursor::new(bytes))
        .finish()?;

    Ok(df)
}
```

### Go

**Concurrent file processing:**
```go
package main

import (
    "context"
    "encoding/csv"
    "github.com/aws/aws-sdk-go-v2/service/s3"
)

func ingestCSV(ctx context.Context, client *s3.Client, bucket, key string) error {
    resp, err := client.GetObject(ctx, &s3.GetObjectInput{
        Bucket: &bucket,
        Key:    &key,
    })
    if err != nil {
        return err
    }
    defer resp.Body.Close()

    reader := csv.NewReader(resp.Body)
    records, err := reader.ReadAll()
    if err != nil {
        return err
    }

    // Batch insert to database
    return batchInsert(ctx, records)
}
```

## Ingestion Patterns

### 1. Batch Ingestion (Files/Storage)

For periodic bulk loads:

```
Source → Extract → Transform → Load → Validate
  ↓         ↓          ↓         ↓        ↓
 S3      Download   Clean/Map  Insert   Count check
```

**Key considerations:**
- Use chunked reading for large files (>100MB)
- Implement idempotency with checksums
- Track file processing state
- Handle partial failures

### 2. Streaming Ingestion (Real-time)

For continuous data flow:

```
Source → Buffer → Process → Load → Ack
  ↓        ↓         ↓        ↓      ↓
Kafka   In-memory  Transform  DB   Commit offset
```

**Key considerations:**
- At-least-once vs exactly-once semantics
- Backpressure handling
- Dead letter queues for failures
- Checkpoint management

### 3. API Polling (Feeds)

For external API data:

```
Schedule → Fetch → Dedupe → Load → Update cursor
   ↓         ↓        ↓       ↓         ↓
 Cron     API call  By ID   Insert   Last timestamp
```

**Key considerations:**
- Rate limiting and backoff
- Incremental loading (cursors, timestamps)
- API pagination handling
- Retry with exponential backoff

### 4. Change Data Capture (CDC)

For database replication:

```
Source DB → Capture changes → Transform → Target DB
    ↓             ↓               ↓            ↓
 Postgres    Debezium/WAL      Map schema   Insert/Update
```

**Key considerations:**
- Initial snapshot + streaming changes
- Schema evolution handling
- Ordering guarantees
- Conflict resolution

## Library Recommendations

| Use Case | Python | TypeScript | Rust | Go |
|----------|--------|------------|------|-----|
| **ETL Framework** | dlt, Meltano, Dagster | - | - | - |
| **Cloud Storage** | boto3, gcsfs, adlfs | @aws-sdk/*, @google-cloud/* | aws-sdk-s3, object_store | aws-sdk-go-v2 |
| **File Processing** | polars, pandas, pyarrow | papaparse, xlsx, parquetjs | polars-rs, arrow-rs | encoding/csv, parquet-go |
| **Streaming** | confluent-kafka, aiokafka | kafkajs | rdkafka-rs | franz-go, sarama |
| **CDC** | Debezium, pg_logical | - | - | - |

## Reference Documentation

- `references/cloud-storage.md` - S3, GCS, Azure Blob patterns
- `references/file-formats.md` - CSV, JSON, Parquet, Excel handling
- `references/api-feeds.md` - REST polling, webhooks, GraphQL subscriptions
- `references/streaming-sources.md` - Kafka, Kinesis, Pub/Sub
- `references/database-migration.md` - Schema migration, CDC patterns
- `references/etl-tools.md` - dlt, Meltano, Airbyte, Fivetran

## Scripts

- `scripts/validate_csv_schema.py` - Validate CSV against expected schema
- `scripts/test_s3_connection.py` - Test S3 bucket connectivity
- `scripts/generate_dlt_pipeline.py` - Generate dlt pipeline scaffold

## Chaining with Database Skills

After ingestion, chain to appropriate database skill:

| Destination | Chain to Skill |
|-------------|----------------|
| PostgreSQL, MySQL | `databases-relational` |
| MongoDB, DynamoDB | `databases-document` |
| Qdrant, Pinecone | `databases-vector` (after embedding) |
| ClickHouse, TimescaleDB | `databases-timeseries` |
| Neo4j | `databases-graph` |

For vector databases, chain through `ai-data-engineering` for embedding:
```
ingesting-data → ai-data-engineering → databases-vector
```