clip

تایید شده

OpenAI's model connecting vision and language. Enables zero-shot image classification, image-text matching, and cross-modal retrieval. Trained on 400M image-text pairs. Use for image search, content moderation, or vision-language tasks without fine-tuning. Best for general-purpose image understanding.

@AmberLJC
MIT۱۴۰۴/۱۲/۳
(0)
۰ستاره
۰دانلود
۱بازدید

نصب مهارت

مهارت‌ها کدهای شخص ثالث از مخازن عمومی GitHub هستند. SkillHub الگوهای مخرب شناخته‌شده را اسکن می‌کند اما نمی‌تواند امنیت را تضمین کند. قبل از نصب، کد منبع را بررسی کنید.

نصب سراسری (سطح کاربر):

npx skillhub install AmberLJC/claude-ai-research-skills/clip

نصب در پروژه فعلی:

npx skillhub install AmberLJC/claude-ai-research-skills/clip --project

مسیر پیشنهادی: ~/.claude/skills/clip/

محتوای SKILL.md

---
name: "clip"
description: "OpenAI's model connecting vision and language. Enables zero-shot image classification, image-text matching, and cross-modal retrieval. Trained on 400M image-text pairs. Use for image search, content moderation, or vision-language tasks without fine-tuning. Best for general-purpose image understanding."
---

# CLIP - Contrastive Language-Image Pre-Training

OpenAI's model that understands images from natural language.

## When to use CLIP

**Use when:**
- Zero-shot image classification (no training data needed)
- Image-text similarity/matching
- Semantic image search
- Content moderation (detect NSFW, violence)
- Visual question answering
- Cross-modal retrieval (image→text, text→image)

**Metrics**:
- **25,300+ GitHub stars**
- Trained on 400M image-text pairs
- Matches ResNet-50 on ImageNet (zero-shot)
- MIT License

**Use alternatives instead**:
- **BLIP-2**: Better captioning
- **LLaVA**: Vision-language chat
- **Segment Anything**: Image segmentation

## Quick start

### Installation

```bash
pip install git+https://github.com/openai/CLIP.git
pip install torch torchvision ftfy regex tqdm
```

### Zero-shot classification

```python
import torch
import clip
from PIL import Image

# Load model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

# Load image
image = preprocess(Image.open("photo.jpg")).unsqueeze(0).to(device)

# Define possible labels
text = clip.tokenize(["a dog", "a cat", "a bird", "a car"]).to(device)

# Compute similarity
with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

    # Cosine similarity
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

# Print results
labels = ["a dog", "a cat", "a bird", "a car"]
for label, prob in zip(labels, probs[0]):
    print(f"{label}: {prob:.2%}")
```

## Available models

```python
# Models (sorted by size)
models = [
    "RN50",           # ResNet-50
    "RN101",          # ResNet-101
    "ViT-B/32",       # Vision Transformer (recommended)
    "ViT-B/16",       # Better quality, slower
    "ViT-L/14",       # Best quality, slowest
]

model, preprocess = clip.load("ViT-B/32")
```

| Model | Parameters | Speed | Quality |
|-------|------------|-------|---------|
| RN50 | 102M | Fast | Good |
| ViT-B/32 | 151M | Medium | Better |
| ViT-L/14 | 428M | Slow | Best |

## Image-text similarity

```python
# Compute embeddings
image_features = model.encode_image(image)
text_features = model.encode_text(text)

# Normalize
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)

# Cosine similarity
similarity = (image_features @ text_features.T).item()
print(f"Similarity: {similarity:.4f}")
```

## Semantic image search

```python
# Index images
image_paths = ["img1.jpg", "img2.jpg", "img3.jpg"]
image_embeddings = []

for img_path in image_paths:
    image = preprocess(Image.open(img_path)).unsqueeze(0).to(device)
    with torch.no_grad():
        embedding = model.encode_image(image)
        embedding /= embedding.norm(dim=-1, keepdim=True)
    image_embeddings.append(embedding)

image_embeddings = torch.cat(image_embeddings)

# Search with text query
query = "a sunset over the ocean"
text_input = clip.tokenize([query]).to(device)
with torch.no_grad():
    text_embedding = model.encode_text(text_input)
    text_embedding /= text_embedding.norm(dim=-1, keepdim=True)

# Find most similar images
similarities = (text_embedding @ image_embeddings.T).squeeze(0)
top_k = similarities.topk(3)

for idx, score in zip(top_k.indices, top_k.values):
    print(f"{image_paths[idx]}: {score:.3f}")
```

## Content moderation

```python
# Define categories
categories = [
    "safe for work",
    "not safe for work",
    "violent content",
    "graphic content"
]

text = clip.tokenize(categories).to(device)

# Check image
with torch.no_grad():
    logits_per_image, _ = model(image, text)
    probs = logits_per_image.softmax(dim=-1)

# Get classification
max_idx = probs.argmax().item()
max_prob = probs[0, max_idx].item()

print(f"Category: {categories[max_idx]} ({max_prob:.2%})")
```

## Batch processing

```python
# Process multiple images
images = [preprocess(Image.open(f"img{i}.jpg")) for i in range(10)]
images = torch.stack(images).to(device)

with torch.no_grad():
    image_features = model.encode_image(images)
    image_features /= image_features.norm(dim=-1, keepdim=True)

# Batch text
texts = ["a dog", "a cat", "a bird"]
text_tokens = clip.tokenize(texts).to(device)

with torch.no_grad():
    text_features = model.encode_text(text_tokens)
    text_features /= text_features.norm(dim=-1, keepdim=True)

# Similarity matrix (10 images × 3 texts)
similarities = image_features @ text_features.T
print(similarities.shape)  # (10, 3)
```

## Integration with vector databases

```python
# Store CLIP embeddings in Chroma/FAISS
import chromadb

client = chromadb.Client()
collection = client.create_collection("image_embeddings")

# Add image embeddings
for img_path, embedding in zip(image_paths, image_embeddings):
    collection.add(
        embeddings=[embedding.cpu().numpy().tolist()],
        metadatas=[{"path": img_path}],
        ids=[img_path]
    )

# Query with text
query = "a sunset"
text_embedding = model.encode_text(clip.tokenize([query]))
results = collection.query(
    query_embeddings=[text_embedding.cpu().numpy().tolist()],
    n_results=5
)
```

## Best practices

1. **Use ViT-B/32 for most cases** - Good balance
2. **Normalize embeddings** - Required for cosine similarity
3. **Batch processing** - More efficient
4. **Cache embeddings** - Expensive to recompute
5. **Use descriptive labels** - Better zero-shot performance
6. **GPU recommended** - 10-50× faster
7. **Preprocess images** - Use provided preprocess function

## Performance

| Operation | CPU | GPU (V100) |
|-----------|-----|------------|
| Image encoding | ~200ms | ~20ms |
| Text encoding | ~50ms | ~5ms |
| Similarity compute | <1ms | <1ms |

## Limitations

1. **Not for fine-grained tasks** - Best for broad categories
2. **Requires descriptive text** - Vague labels perform poorly
3. **Biased on web data** - May have dataset biases
4. **No bounding boxes** - Whole image only
5. **Limited spatial understanding** - Position/counting weak

## Resources

- **GitHub**: https://github.com/openai/CLIP ⭐ 25,300+
- **Paper**: https://arxiv.org/abs/2103.00020
- **Colab**: https://colab.research.google.com/github/openai/clip/
- **License**: MIT