llava

تایید شده

Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis.

@AmberLJC
MIT۱۴۰۴/۱۲/۳
(0)
۰ستاره
۰دانلود
۱بازدید

نصب مهارت

مهارت‌ها کدهای شخص ثالث از مخازن عمومی GitHub هستند. SkillHub الگوهای مخرب شناخته‌شده را اسکن می‌کند اما نمی‌تواند امنیت را تضمین کند. قبل از نصب، کد منبع را بررسی کنید.

نصب سراسری (سطح کاربر):

npx skillhub install AmberLJC/claude-ai-research-skills/llava

نصب در پروژه فعلی:

npx skillhub install AmberLJC/claude-ai-research-skills/llava --project

مسیر پیشنهادی: ~/.claude/skills/llava/

محتوای SKILL.md

---
name: "llava"
description: "Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis."
---

# LLaVA - Large Language and Vision Assistant

Open-source vision-language model for conversational image understanding.

## When to use LLaVA

**Use when:**
- Building vision-language chatbots
- Visual question answering (VQA)
- Image description and captioning
- Multi-turn image conversations
- Visual instruction following
- Document understanding with images

**Metrics**:
- **23,000+ GitHub stars**
- GPT-4V level capabilities (targeted)
- Apache 2.0 License
- Multiple model sizes (7B-34B params)

**Use alternatives instead**:
- **GPT-4V**: Highest quality, API-based
- **CLIP**: Simple zero-shot classification
- **BLIP-2**: Better for captioning only
- **Flamingo**: Research, not open-source

## Quick start

### Installation

```bash
# Clone repository
git clone https://github.com/haotian-liu/LLaVA
cd LLaVA

# Install
pip install -e .
```

### Basic usage

```python
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import torch

# Load model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
    model_path=model_path,
    model_base=None,
    model_name=get_model_name_from_path(model_path)
)

# Load image
image = Image.open("image.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)

# Create conversation
conv = conv_templates["llava_v1"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

# Generate response
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)

with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=image_tensor,
        do_sample=True,
        temperature=0.2,
        max_new_tokens=512
    )

response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print(response)
```

## Available models

| Model | Parameters | VRAM | Quality |
|-------|------------|------|---------|
| LLaVA-v1.5-7B | 7B | ~14 GB | Good |
| LLaVA-v1.5-13B | 13B | ~28 GB | Better |
| LLaVA-v1.6-34B | 34B | ~70 GB | Best |

```python
# Load different models
model_7b = "liuhaotian/llava-v1.5-7b"
model_13b = "liuhaotian/llava-v1.5-13b"
model_34b = "liuhaotian/llava-v1.6-34b"

# 4-bit quantization for lower VRAM
load_4bit = True  # Reduces VRAM by ~4×
```

## CLI usage

```bash
# Single image query
python -m llava.serve.cli \
    --model-path liuhaotian/llava-v1.5-7b \
    --image-file image.jpg \
    --query "What is in this image?"

# Multi-turn conversation
python -m llava.serve.cli \
    --model-path liuhaotian/llava-v1.5-7b \
    --image-file image.jpg
# Then type questions interactively
```

## Web UI (Gradio)

```bash
# Launch Gradio interface
python -m llava.serve.gradio_web_server \
    --model-path liuhaotian/llava-v1.5-7b \
    --load-4bit  # Optional: reduce VRAM

# Access at http://localhost:7860
```

## Multi-turn conversations

```python
# Initialize conversation
conv = conv_templates["llava_v1"].copy()

# Turn 1
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
response1 = generate(conv, model, image)  # "A dog playing in a park"

# Turn 2
conv.messages[-1][1] = response1  # Add previous response
conv.append_message(conv.roles[0], "What breed is the dog?")
conv.append_message(conv.roles[1], None)
response2 = generate(conv, model, image)  # "Golden Retriever"

# Turn 3
conv.messages[-1][1] = response2
conv.append_message(conv.roles[0], "What time of day is it?")
conv.append_message(conv.roles[1], None)
response3 = generate(conv, model, image)
```

## Common tasks

### Image captioning

```python
question = "Describe this image in detail."
response = ask(model, image, question)
```

### Visual question answering

```python
question = "How many people are in the image?"
response = ask(model, image, question)
```

### Object detection (textual)

```python
question = "List all the objects you can see in this image."
response = ask(model, image, question)
```

### Scene understanding

```python
question = "What is happening in this scene?"
response = ask(model, image, question)
```

### Document understanding

```python
question = "What is the main topic of this document?"
response = ask(model, document_image, question)
```

## Training custom model

```bash
# Stage 1: Feature alignment (558K image-caption pairs)
bash scripts/v1_5/pretrain.sh

# Stage 2: Visual instruction tuning (150K instruction data)
bash scripts/v1_5/finetune.sh
```

## Quantization (reduce VRAM)

```python
# 4-bit quantization
tokenizer, model, image_processor, context_len = load_pretrained_model(
    model_path="liuhaotian/llava-v1.5-13b",
    model_base=None,
    model_name=get_model_name_from_path("liuhaotian/llava-v1.5-13b"),
    load_4bit=True  # Reduces VRAM ~4×
)

# 8-bit quantization
load_8bit=True  # Reduces VRAM ~2×
```

## Best practices

1. **Start with 7B model** - Good quality, manageable VRAM
2. **Use 4-bit quantization** - Reduces VRAM significantly
3. **GPU required** - CPU inference extremely slow
4. **Clear prompts** - Specific questions get better answers
5. **Multi-turn conversations** - Maintain conversation context
6. **Temperature 0.2-0.7** - Balance creativity/consistency
7. **max_new_tokens 512-1024** - For detailed responses
8. **Batch processing** - Process multiple images sequentially

## Performance

| Model | VRAM (FP16) | VRAM (4-bit) | Speed (tokens/s) |
|-------|-------------|--------------|------------------|
| 7B | ~14 GB | ~4 GB | ~20 |
| 13B | ~28 GB | ~8 GB | ~12 |
| 34B | ~70 GB | ~18 GB | ~5 |

*On A100 GPU*

## Benchmarks

LLaVA achieves competitive scores on:
- **VQAv2**: 78.5%
- **GQA**: 62.0%
- **MM-Vet**: 35.4%
- **MMBench**: 64.3%

## Limitations

1. **Hallucinations** - May describe things not in image
2. **Spatial reasoning** - Struggles with precise locations
3. **Small text** - Difficulty reading fine print
4. **Object counting** - Imprecise for many objects
5. **VRAM requirements** - Need powerful GPU
6. **Inference speed** - Slower than CLIP

## Integration with frameworks

### LangChain

```python
from langchain.llms.base import LLM

class LLaVALLM(LLM):
    def _call(self, prompt, stop=None):
        # Custom LLaVA inference
        return response

llm = LLaVALLM()
```

### Gradio App

```python
import gradio as gr

def chat(image, text, history):
    response = ask_llava(model, image, text)
    return response

demo = gr.ChatInterface(
    chat,
    additional_inputs=[gr.Image(type="pil")],
    title="LLaVA Chat"
)
demo.launch()
```

## Resources

- **GitHub**: https://github.com/haotian-liu/LLaVA ⭐ 23,000+
- **Paper**: https://arxiv.org/abs/2304.08485
- **Demo**: https://llava.hliu.cc
- **Models**: https://huggingface.co/liuhaotian
- **License**: Apache 2.0