visualization

تایید شده

Data visualization with OpenAlgo - candlestick charts, options payoff diagrams, P&L dashboards, and real-time Streamlit dashboards

@marketcalls
MIT۱۴۰۴/۱۱/۳۰
(0)
۲ستاره
۱دانلود
۱۱بازدید

نصب مهارت

مهارت‌ها کدهای شخص ثالث از مخازن عمومی GitHub هستند. SkillHub الگوهای مخرب شناخته‌شده را اسکن می‌کند اما نمی‌تواند امنیت را تضمین کند. قبل از نصب، کد منبع را بررسی کنید.

نصب سراسری (سطح کاربر):

npx skillhub install marketcalls/openalgo-claude-plugin/visualization

نصب در پروژه فعلی:

npx skillhub install marketcalls/openalgo-claude-plugin/visualization --project

مسیر پیشنهادی: ~/.claude/skills/visualization/

محتوای SKILL.md

---
name: visualization
description: Data visualization with OpenAlgo - candlestick charts, options payoff diagrams, P&L dashboards, and real-time Streamlit dashboards
---

# OpenAlgo Visualization

Create trading charts, dashboards, and visualizations using OpenAlgo data. Build interactive Streamlit dashboards for real-time monitoring.

## Environment Setup

```python
from openalgo import api
import pandas as pd
import plotly.graph_objects as go

client = api(
    api_key='your_api_key_here',
    host='http://127.0.0.1:5000'
)
```

## Quick Start Scripts

### Candlestick Chart
```bash
python scripts/candlestick.py --symbol SBIN --exchange NSE --interval 5m --days 5
```

### Options Payoff Diagram
```bash
python scripts/payoff.py --strategy "iron_condor" --underlying NIFTY --expiry 30JAN25
```

### P&L Dashboard
```bash
streamlit run scripts/pnl_dashboard.py
```

---

## Candlestick Charts

### Basic Candlestick with Plotly

```python
from openalgo import api
import plotly.graph_objects as go

client = api(api_key='your_key', host='http://127.0.0.1:5000')

# Fetch historical data
df = client.history(
    symbol="SBIN",
    exchange="NSE",
    interval="5m",
    start_date="2025-01-01",
    end_date="2025-01-10"
)

# Create candlestick chart
fig = go.Figure(data=[go.Candlestick(
    x=df.index,
    open=df['open'],
    high=df['high'],
    low=df['low'],
    close=df['close'],
    name='SBIN'
)])

fig.update_layout(
    title='SBIN 5-Minute Chart',
    yaxis_title='Price',
    xaxis_title='Time',
    xaxis_rangeslider_visible=False
)

fig.show()
```

### Candlestick with Volume

```python
from plotly.subplots import make_subplots

fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
                    vertical_spacing=0.03,
                    row_heights=[0.7, 0.3])

# Candlestick
fig.add_trace(go.Candlestick(
    x=df.index,
    open=df['open'],
    high=df['high'],
    low=df['low'],
    close=df['close'],
    name='Price'
), row=1, col=1)

# Volume bars
colors = ['green' if c >= o else 'red' for c, o in zip(df['close'], df['open'])]
fig.add_trace(go.Bar(
    x=df.index,
    y=df['volume'],
    marker_color=colors,
    name='Volume'
), row=2, col=1)

fig.update_layout(
    title='SBIN Chart with Volume',
    xaxis_rangeslider_visible=False
)

fig.show()
```

### Moving Averages

```python
# Calculate MAs
df['SMA_20'] = df['close'].rolling(window=20).mean()
df['SMA_50'] = df['close'].rolling(window=50).mean()
df['EMA_9'] = df['close'].ewm(span=9, adjust=False).mean()

fig = go.Figure()

fig.add_trace(go.Candlestick(
    x=df.index,
    open=df['open'], high=df['high'],
    low=df['low'], close=df['close'],
    name='Price'
))

fig.add_trace(go.Scatter(x=df.index, y=df['SMA_20'], name='SMA 20', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=df.index, y=df['SMA_50'], name='SMA 50', line=dict(color='orange')))
fig.add_trace(go.Scatter(x=df.index, y=df['EMA_9'], name='EMA 9', line=dict(color='purple')))

fig.show()
```

---

## Options Payoff Diagrams

### Long Call Payoff

```python
import numpy as np
import plotly.graph_objects as go

def long_call_payoff(spot_range, strike, premium):
    """Calculate long call payoff."""
    return np.maximum(spot_range - strike, 0) - premium

# Parameters
strike = 26000
premium = 250
spot_range = np.arange(25000, 27000, 50)

payoff = long_call_payoff(spot_range, strike, premium)

fig = go.Figure()
fig.add_trace(go.Scatter(
    x=spot_range,
    y=payoff,
    mode='lines',
    name='Long Call',
    line=dict(color='green', width=2)
))

fig.add_hline(y=0, line_dash="dash", line_color="gray")
fig.add_vline(x=strike, line_dash="dash", line_color="blue", annotation_text="Strike")

fig.update_layout(
    title=f'Long Call Payoff (Strike: {strike}, Premium: {premium})',
    xaxis_title='Spot Price',
    yaxis_title='Profit/Loss'
)

fig.show()
```

### Iron Condor Payoff

```python
def iron_condor_payoff(spot_range, pe_buy, pe_sell, ce_sell, ce_buy,
                       pe_buy_prem, pe_sell_prem, ce_sell_prem, ce_buy_prem):
    """Calculate Iron Condor payoff."""
    # Long PE (far OTM)
    long_pe = np.maximum(pe_buy - spot_range, 0) - pe_buy_prem
    # Short PE (near OTM)
    short_pe = pe_sell_prem - np.maximum(pe_sell - spot_range, 0)
    # Short CE (near OTM)
    short_ce = ce_sell_prem - np.maximum(spot_range - ce_sell, 0)
    # Long CE (far OTM)
    long_ce = np.maximum(spot_range - ce_buy, 0) - ce_buy_prem

    return long_pe + short_pe + short_ce + long_ce

# Iron Condor parameters
spot_range = np.arange(25000, 27000, 25)
pe_buy, pe_sell = 25500, 25750    # Put strikes
ce_sell, ce_buy = 26250, 26500    # Call strikes
pe_buy_prem, pe_sell_prem = 50, 100
ce_sell_prem, ce_buy_prem = 100, 50

payoff = iron_condor_payoff(
    spot_range, pe_buy, pe_sell, ce_sell, ce_buy,
    pe_buy_prem, pe_sell_prem, ce_sell_prem, ce_buy_prem
)

fig = go.Figure()
fig.add_trace(go.Scatter(
    x=spot_range, y=payoff,
    mode='lines', name='Iron Condor',
    fill='tozeroy',
    line=dict(color='purple', width=2)
))

fig.add_hline(y=0, line_dash="dash")
fig.update_layout(
    title='Iron Condor Payoff Diagram',
    xaxis_title='Spot Price at Expiry',
    yaxis_title='Profit/Loss'
)

fig.show()
```

### Straddle Payoff

```python
def straddle_payoff(spot_range, strike, call_prem, put_prem, position='long'):
    """Calculate straddle payoff."""
    call_payoff = np.maximum(spot_range - strike, 0) - call_prem
    put_payoff = np.maximum(strike - spot_range, 0) - put_prem

    if position == 'long':
        return call_payoff + put_payoff
    else:  # short
        return -(call_payoff + put_payoff)

spot_range = np.arange(25000, 27000, 25)
strike = 26000
call_prem, put_prem = 250, 245

long_payoff = straddle_payoff(spot_range, strike, call_prem, put_prem, 'long')
short_payoff = straddle_payoff(spot_range, strike, call_prem, put_prem, 'short')

fig = go.Figure()
fig.add_trace(go.Scatter(x=spot_range, y=long_payoff, name='Long Straddle', line=dict(color='green')))
fig.add_trace(go.Scatter(x=spot_range, y=short_payoff, name='Short Straddle', line=dict(color='red')))
fig.add_hline(y=0, line_dash="dash")

fig.update_layout(
    title='Straddle Payoff Comparison',
    xaxis_title='Spot Price',
    yaxis_title='Profit/Loss'
)

fig.show()
```

---

## Real-time Streamlit Dashboard

### Basic Dashboard Template

```python
# streamlit_dashboard.py
import streamlit as st
from openalgo import api
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
import time

st.set_page_config(page_title="OpenAlgo Dashboard", layout="wide")

# Initialize client
@st.cache_resource
def get_client():
    return api(
        api_key=st.secrets.get("OPENALGO_API_KEY", "your_key"),
        host=st.secrets.get("OPENALGO_HOST", "http://127.0.0.1:5000")
    )

client = get_client()

# Sidebar
st.sidebar.title("OpenAlgo Dashboard")
symbols = st.sidebar.text_input("Symbols (comma-separated)", "NIFTY,BANKNIFTY,RELIANCE")
exchange = st.sidebar.selectbox("Exchange", ["NSE", "NSE_INDEX", "NFO", "MCX"])
refresh_rate = st.sidebar.slider("Refresh Rate (seconds)", 1, 60, 5)

# Main content
st.title("Real-time Market Dashboard")

# Watchlist
col1, col2 = st.columns([2, 1])

with col1:
    st.subheader("Watchlist")

    symbol_list = [{"symbol": s.strip(), "exchange": exchange} for s in symbols.split(",")]

    placeholder = st.empty()

    while True:
        quotes = client.multiquotes(symbols=symbol_list)

        if quotes.get('status') == 'success':
            data = []
            for item in quotes.get('results', []):
                d = item.get('data', {})
                change = d['ltp'] - d['prev_close'] if d.get('prev_close') else 0
                change_pct = (change / d['prev_close'] * 100) if d.get('prev_close') else 0

                data.append({
                    'Symbol': item['symbol'],
                    'LTP': d.get('ltp', 0),
                    'Change': change,
                    'Change%': change_pct,
                    'Volume': d.get('volume', 0)
                })

            df = pd.DataFrame(data)

            # Style the dataframe
            def color_change(val):
                color = 'green' if val > 0 else 'red' if val < 0 else 'black'
                return f'color: {color}'

            styled_df = df.style.applymap(color_change, subset=['Change', 'Change%'])
            placeholder.dataframe(styled_df, use_container_width=True)

        time.sleep(refresh_rate)

with col2:
    st.subheader("Quick Stats")
    st.metric("Last Updated", datetime.now().strftime("%H:%M:%S"))
```

### P&L Dashboard

```python
# pnl_dashboard.py
import streamlit as st
from openalgo import api
import pandas as pd
import plotly.express as px

st.set_page_config(page_title="P&L Dashboard", layout="wide")

@st.cache_resource
def get_client():
    return api(api_key="your_key", host="http://127.0.0.1:5000")

client = get_client()

st.title("Portfolio P&L Dashboard")

# Fetch positions
positions = client.positionbook()
holdings = client.holdings()
funds = client.funds()

col1, col2, col3 = st.columns(3)

# Funds summary
if funds.get('status') == 'success':
    fund_data = funds.get('data', {})
    col1.metric("Available Cash", f"₹{float(fund_data.get('availablecash', 0)):,.2f}")
    col2.metric("M2M Realized", f"₹{float(fund_data.get('m2mrealized', 0)):,.2f}")
    col3.metric("M2M Unrealized", f"₹{float(fund_data.get('m2munrealized', 0)):,.2f}")

# Positions
st.subheader("Open Positions")
if positions.get('status') == 'success':
    pos_data = positions.get('data', [])
    if pos_data:
        df = pd.DataFrame(pos_data)
        df['pnl'] = pd.to_numeric(df['pnl'], errors='coerce')

        # P&L chart
        fig = px.bar(df, x='symbol', y='pnl', color='pnl',
                     color_continuous_scale=['red', 'green'],
                     title='Position-wise P&L')
        st.plotly_chart(fig, use_container_width=True)

        st.dataframe(df, use_container_width=True)
    else:
        st.info("No open positions")

# Holdings
st.subheader("Holdings")
if holdings.get('status') == 'success':
    hold_data = holdings.get('data', {}).get('holdings', [])
    if hold_data:
        df = pd.DataFrame(hold_data)
        st.dataframe(df, use_container_width=True)

        # Holdings pie chart
        fig = px.pie(df, values='quantity', names='symbol', title='Holdings Distribution')
        st.plotly_chart(fig, use_container_width=True)
```

---

## Chart Patterns

### Support/Resistance Lines

```python
import numpy as np
from scipy.signal import argrelextrema

def find_support_resistance(df, order=5):
    """Find support and resistance levels."""
    highs = df['high'].values
    lows = df['low'].values

    # Find local maxima and minima
    resistance_idx = argrelextrema(highs, np.greater, order=order)[0]
    support_idx = argrelextrema(lows, np.less, order=order)[0]

    resistance_levels = highs[resistance_idx]
    support_levels = lows[support_idx]

    return support_levels, resistance_levels

support, resistance = find_support_resistance(df)

fig = go.Figure()
fig.add_trace(go.Candlestick(x=df.index, open=df['open'], high=df['high'],
                              low=df['low'], close=df['close']))

for level in support[-3:]:  # Last 3 support levels
    fig.add_hline(y=level, line_dash="dash", line_color="green",
                  annotation_text=f"Support: {level:.2f}")

for level in resistance[-3:]:  # Last 3 resistance levels
    fig.add_hline(y=level, line_dash="dash", line_color="red",
                  annotation_text=f"Resistance: {level:.2f}")

fig.show()
```

---

## Notes

- Use Plotly for interactive charts
- Streamlit for quick dashboards
- Matplotlib for static charts
- Consider caching data to reduce API calls
- WebSocket streaming for real-time updates in dashboards
visualization | SkillHub | SkillHub